
Parallel K-Means Clustering for Image Colour
Quantization

Mandikal Vikram, Aditya Anantharaman, Suhas B S, Rakshith Gopalakrishna
Department of Information Technology

National Institute of Technology Karnataka
Surathkal, Mangaluru 575025

Email: 15it217.vikram@nitk.edu.in,15it201.aditya.a@nitk.edu.in
15it110.suhas@nitk.edu.in, 15it134.rakshith@nitk.edu.in

Abstract—Image colour quantization is an important problem
in Computer Graphics and Image Processing. This reduces the
number of colours in the image and facilitates the display, storage,
and transmission of images. This is a necessary prepossessing
to make images compatible low-end hardware device which can
display a limited number of devices. This work shows how
this quantization can be achieved by the means of k-Means
clustering. The algorithm is implemented in parallel for efficient
execution and we provide a performance comparison of various
platforms such as OpenMP, CUDA, and MPI. We find that CUDA
outperforms other platforms by a large margin due to fine-grained
parallelism and a higher degree of concurrency.

Keywords—Colour quantization, K-means clustering, Parallel
Programming, OpenMP, CUDA, MPI

I. INTRODUCTION

Colour quantization refers to reducing the number of dis-
tinct colours in an image while trying to maintain the visual
appearance of the image as shown in figure 1. It finds its ap-
plication in many tasks in graphics and image processing such
as compression[1], segmentation[2], colour-texture analysis[3]
and watermarking[4]. Hence, it is important to achieve this in
an efficient manner for which we use parallel programming
techniques. The proposed algorithm is independent of the
image and does not require any image specific information
such as the variance-based method[5], binary splitting[6] and
greedy orthogonal bipartitioning[7].

(a) Original Image (b) Colour Quantized Image

Fig. 1: Original and colour quantized images

Each pixel in an image stores three values - its respective
red, blue and green intensities. When we quantize the colours
i.e. limit the colours to a few fixed values, each pixel will

have to only store one value which indicates which quantum it
belongs to. The common colour intensities of each quantum is
separately stored which will require minimal space compared
to storing the intensities of every pixel.

Our method identifies these quanta by clustering pixels
with similar colour intensities. The similarity between two
pixels is measured by using the euclidean distance between
the RGB intensities. The clustering is done using the K-Means
algorithm which ensures that there is maximum intra-cluster
similarity and maximum inter-cluster dissimilarity. The mean
RGB intensities of each of these clusters are stored and each
pixel in the quantized image belongs to one of the cluster and
will display the mean intensities of this cluster which is stored.

In this work we explore various parallel programming
techniques and platforms to achieve a higher efficiency. This
algorithm is highly suitable for parallel implementation as each
pixel can be independently be mapped to its cluster center. This
mapping can be theoretically performed simultaneously for all
the pixels but it is limited by the number of processors for
OpenMP and MPI. Larger number of cores in the GPU allows
CUDA to achieve a higher degree of concurrency. Highlights of
this work includes an average compression factor of 2.2 and an
average speedup of 1500 for CUDA over serial implemntation.

The paper is further organized as follows : II Related
Work, III Proposed Approach, IV Results and Discussion, V
Conclusion and VI References.

II. RELATED WORK

This section describes briefly two important works from
which the proposed approach draws inspiration.

The first work is a work on k-means algorithm for colour
quantization by M. Emre Celebi[8]. This work explores the k-
means algorithm from the colour quantization perspective. It
describes various experiments to show that the k-means algo-
rithm can be used for effective colour quantization. The work
also mentions that the k-means clustering is easy to implement
and is fast when applied to image colour quantization.

The second work is based on parallelising the k-means
algorithm by Reza Farivar et al[9]. This work shows that

the k-means algorithm is suitable for parallel implementation
and can be easily accelerated by using larger number of
processors. They show that with p cores, the first phase of k-
means clustering which includes mapping of the data points
to the cluster centers can be accelerated to Θ(nk/p) from
Θ(nk) where n is the number of data points and k is the
number of clusters. This is because mapping of one data point
is independent of other data points and can be executed in
parallel. If the number of processors equal the number of data
points this phase can be completed in a single phase.

We incorporate the parallel k-means algorithm for colour
quantization as the number of data points i.e. the number of
pixels is large for an image and hence we can obtain a large
speedup if we parallelise the algorithm. We also parallelise
the second phase of the k-means clustering which was not
been done by [9] . This phase involves re-calculating the
cluster centers to an extent, however, this phase cannot be fully
parallelised due to data dependency.

III. PROPOSED ALGORITHM

First, we describe the sequential k-means algorithm and
present its analysis before moving to the parallel implementa-
tions.

A. Sequential K-Means Algorithm

The k-means algorithm as described in [10] assigns a given
set of data points to k clusters. In the update step, a given data
point is assigned to its closest cluster center (µ) (see equation
1). In case more than one cluster center has the same distance
to a data point, the cluster center is chosen randomly.

S
(t)
i =

{
xp :

∥∥xp−µ(t)
i

∥∥2 ≤ ∥∥xp−µ(t)
j

∥∥2 ∀j, 1 ≤ j ≤ k} (1)

This is followed by reinitializing the cluster centers to the
mean of the data points assigned to each cluster (see equation
2).

µ
(t+1)
i =

1

|S(t)
i |

∑
xj∈S(t)

i

xj (2)

This process is repeated until there is no change in cluster
centers. The k-means algorithm tries to optimize the objective
function 3.

J =

N∑
n=1

K∑
k=1

rnk||xn − µk||2 (3)

with rnk =

{
1 xn ∈ Sk

0 otherwise

Fig. 2: Clusters formed by kmeans algorithm

Algorithm 1 Sequential kmeans algorithm
Input X = {x1, x2, x3...xN} (N Data Points), k (Number of
Clusters)
Output C = {c1, c2, c3...cK} (k Clusters)

Select initial set of cluster centers as a random subset
C of X

while cluster centers donot change do
Phase 1: Map points to cluster centers

for j = 1; j <= N ; j = j + 1 do
m[j] = argmink∈{1,2..k} dis(xj , ck)

end

Phase 2: Recalculate the cluster centers

for j = 1; j <= N ; j = j + 1 do
ck = 1

|Sk|
∑

xj∈Sk
xj

end
end

The sequential k-means algorithm is described by Algo-
rithm 1. The formations of cluster by this algorithm can be
visualized in Figure 2. In the context of colour quantization,
the data points are the individual pixels which store the values
of their RGB intensities. The number of clusters k equals
the number of colours desired in the colour quantized image.
The value dis(xi, ck) in Algorithm 1, is calculated using the
euclidean distance of the colour intensities as given by equation
4 where rxi , gxi, bxi refer to the red, green and blue intensities
of the pixel and rcj , gcj , bcj refer to the intensities of the
cluster center. Random pixels from the image are initially set
as the cluster centers.

dis(xi, cj) =
√

(rxi − rcj)2 + (gxi − gcj)2 + (bxi − bcj)2
(4)

B. Parallelising the algorithm

We analyze the first phase and second phase in Algorithm
1 separately to see how they can be parallelised. These phases

are iterated repeatedly in the algorithm. Also, phase 1 can occur
only after phase 2 has occurred in the previous iteration, and,
phase 2 can occur only after phase 1 has been completed in
the current iteration. Hence, it is not possible to parallelise the
outermost loop in Algorithm 1.

1) Phase 1:

• Input - data points and cluster centers.

• Output - mapping of data points to cluster centers.

• The mapping of a given pixel to one of the cluster
centers is independent of other pixels. It only depends
on its own pixel intensities and that of the cluster
centers.

• The cluster centers remain constant in this phase
and hence the output is naturally a function of the
input without any dependencies. Hence, input data
decomposition is possible.

• Each thread can be assigned a group of pixels, for
which it will calculate the mapping.

• A more granular decomposition will increase the
speedup of this phase. If the number of processors
permit to assign one thread to each pixel, this phase
can be completed in a single step.

• Serial complexity of this phase : Θ(nk), where n is
the number of pixels and k is the number of cluster
centers.

• With p processors, the complexity will be reduced to
(nk)
p .

2) Phase 2:

• Input - Cluster labels for each pixel and individual
pixel intensities.

• Output - New cluster centers.

• The new cluster centers are calculated as the mean of
the clusters.

• Since, the calculation of mean of one cluster depends
on all the points in that cluster, data dependency exists.

• Thus, it is not possible to completely parallelise this
phase as in phase 1.

• We parallelise this phase in two different ways:
◦ Calculate the mean for each cluster using re-

duction i.e. in parallel. This, is done in a
sequential way for each cluster. This technique
is used in our OpenMP implementation.

◦ Calculate the mean for all clusters in parallel,
but for a given cluster the calculation is done
sequentially. This is done in our CUDA imple-
mentation.

(a) Lower Granularity of Decomposition

(b) Higher Granularity of Decomposition

Fig. 3: This shows the decomposition of the pixels to proces-
sors in Phase 1. Here, m1 > m2, hence, sub-figure (a) has
a coarser granularity compared to sub-figure (b). Since, the
output mapping is dependent only on the input pixel, a finer
granularity increases the speed of this phase.

C. OpenMP

Here, phase 1 is parallelised by using a parallel for loop
with static scheduling. Each thread receives p/t pixels where
p is the number of pixels and t is the number of threads.
Each thread then calculates the nearest cluster for all the pixels
assigned to it. This assignment is done in a critical section to
form a map from the cluster number to the pixels assigned to
the cluster, this enables the calculation of cluster mean in phase
2 to be done using reduction. Mean calculation for a particular
cluster is done in parallel, which is repeated sequentially for
all clusters.

D. MPI

Here, the master process initially assigns p/t pixels to
each processor where p is the number of pixels and t is the
number of processors. The slave processors only have local
information about the pixels assigned to them and do not have
any global information, hence the master processor coordinates
with the slave processors. Each slave processor calculates the
nearest cluster for all the pixels assigned to it in phase 1 and
sends the sum and count of pixels assigned to each cluster to
the master processor. The master processor upon receiving all
sums and counts from the slave processors calculates the new

cluster centroids which completes phase 2. These recalculated
centroids are broadcasted back to the slave processors.

E. CUDA

There are specific kernels designated to both phase 1 and
phase 2. In phase 1, a thread is assigned to each pixel which
simply assigns the nearest cluster to the pixel. Larger number
of cores in the GPU felicitates finer granularity in phase 1,
thus reducing the overall time complexity and accelerating
the performance. In phase 2, the mean calculation for all
clusters takes place in parallel,but for a given cluster it is done
sequentially.

F. Parallel Models Used

• Data parallel model - In phase 1, each thread works
on a subsection of the image and calculates nearest
centroid in parallel. This model is used in OpenMP
and CUDA implementations.

• Master Slave model - In MPI, the master processor
assigns the task of mapping pixels to clusters and the
slave processors complete this task and return the sum
and count values for each cluster back to the master
processor.

IV. RESULTS AND DISCUSSION

All experiments were conducted on a system with 56
Intel Xeon CPU E52680 cores and Nvidia Tesla M40 GPU
with 3072 Nvidia CUDA cores and 24 GB of GDDR5 video
memory.

The details of the images used for conducting our exper-
iments is summarized in table I. The time taken on different
platforms for these images are compiled in table II

TABLE I: Image Details

Image Dimensions Number of Colours

Parrot 1024 × 768 153063
Bird 730 × 487 107257

Flower 960 × 563 123137
Colosseo 1000 × 1000 231382

Bike 1024 × 256 99272

TABLE II: Time taken in seconds for different images with
k=16

Platform Parrot Bird Flower Colosseo Bike

CUDA 0.129 0.131 0.06 0.181 0.209
MPI 4.781724 2.694147 3.465208 6.45931 4.140578

OpenMP 53.0696 57.8544 19.1501 53.7564 64.7001
Sequential 216.988 227.768 85.4472 250.747 300.264

The above table suggests that CUDA performs exceedingly
well on all the images. MPI performs better than OpenMP
whereas both MPI and OpenMP are much faster than the
sequential implementation. The speedup for CUDA over se-
quential was 1522.83, it was 64.14 for MPI and 5.55 for

Fig. 4: Time Comparison on different platforms

OpenMP. These times are plotted in figure 4, where the y-
axis is in logarithmic scale due to the large difference in the
range of values for CUDA platform and serial execution. The
x-axis represents the number of pixels in the different images.
As seen in the graph, increase in the number of pixels does not
necessary lead to increase in time taken, this is because early
convergence of the k-means algorithm will lead to a lesser
time. For example, a larger image with very few colours will
converge in a lesser number of iterations and hence may take
lesser time when compared to a smaller image with a large
number of colours which does not converge easily. The number
of iterations depends on the convergence of the algorithm,
this cannot be improved by parallel programming - only the
computations which occur in each iteration can be made more
efficient by executing them in parallel. As seen in table II,
although ’bird’ is a smaller image than ’parrot’, it takes more
time because the distinct colours in the parrot image allow it
converge in a few iterations. We can see that this trend where
the larger ’parrot’ image takes converges faster than the smaller
’bird’ image is consistent in most of the platforms.

As seen in figure 5, when we increase the number of
clusters, the quality of the image also improves. There is very
minimal loss of quality by reducing the image with 231382
colours to just 256 colours. This concept is used to make
images compatible with devices which can display only a few
limited colours.

Image Compression
Image compression is an application of colour quantization. In
a standard image, each pixel stores its own RGB intensities.
Since, each colour intensity can take a value between 0-256,
the intensity would occupy 8 × 3 = 24 bits. Thus, an image
with dimensions H×W would occupy H×W×24 bits. When
the colours are limited to 256 values, a map data structure is
used to store the intensity values of the 256 colours - the key
is the colour number and the value is the RGB intensities. This
dictionary would occupy 256× 24 bits. In the image, at each
pixel only the colour number is stored which will occupy 8 bits
(since there are 256 colour numbers). Thus, the new size of the
compressed image would be (H×W×8)+256×24 bits which
is much lesser when compared to the initial H ×W × 24 bits.

(a) 4 colours (b) 8 colours (c) 16 colours

(d) 32 colours (e) 64 colours (f) 128 colours

(g) 256 colours (h) Original Image with 231382
colours

Fig. 5: Images obtained by changing the number of clusters i.e k

This compression factor is formalised by equation 5 where K
is the number of clusters.

compressionfactor =
H ×W × 24

(H ×W × log2K) +K × 24
(5)

Thus, we expect a theoretical compression of a factor of
6 for an image of dimension 750 × 750 with 16 colours.
However, when we serialized C++ data structures using the
boost package we obtained an average compression factor of
2.2.

A. Comparison of the three platforms

A detailed comparison of the time taken in various parallel
programming platforms is recorded in table III. The same is
visualized in figure 6. It is evident that CUDA outperforms
other platforms by a large margin, the reasons contributing to
this are as follows :

• A much larger number of cores on the GPU (3072)
compared to the CPU (56) allows a higher degree of
concurrency.

• No communication overhead which is present in MPI.

TABLE III: Detailed Comparison of Various Parallel Programming Platforms
Time taken in seconds

K Platform Parrot Bird Flower Colosseo Bike Average

4 CUDA 0.046879 0.037211 0.024972 0.06177 0.013609 0.0368882
4 OpenMP 19.6825 12.9806 12.0248 25.0436 6.5882 15.26394
4 MPI 4.352257 1.580914 1.897685 3.284286 2.353469 2.6937222

8 CUDA 0.047922 0.064404 0.031161 0.117236 0.107063 0.0735572
8 OpenMP 18.5444 22.2507 11.1587 34.9771 36.5382 24.69382
8 MPI 4.015927 1.870726 3.573816 4.936909 3.456555 3.5707866

16 CUDA 0.129847 0.13187 0.062558 0.203582 0.219095 0.1493904
16 OpenMP 53.0696 57.8544 19.1501 19.1501 53.7564 64.7001
16 MPI 4.781724 2.694147 3.465208 6.45931 4.140578 4.3081934

32 CUDA 0.277212 0.18513 0.306853 0.232024 0.186148 0.2374734
32 OpenMP 107.008 52.9384 95.001 65.3133 105.526 85.15734
32 MPI 8.403226 3.196628 5.164831 8.678829 5.876272 6.2639572

Each thread performs the computation in Phase 1 for
a designated pixel.

• The means of various clusters can be calculated in
parallel.

Fig. 6: Time plotted against Number of Centroids

V. CONCLUSION

In this work we show how clustering can be used as a
means for colour quantization. Since the number of pixels in
any image is large, the clustering should be efficient and hence
we explore parallel techniques for achieving that. We describe
the parallel model used and present comparison of performance
using three different platforms - CUDA, MPI and OpenMp.
We also describe how this colour quantization technique can be
used for image compression. We show that CUDA outperforms
other platforms by a large margin due to a higher degree of
concurrency.

REFERENCES

[1] C.-K. Yang and W.-H. Tsai, “Color image compression using quanti-
zation, thresholding, and edge detection techniques all based on the
moment-preserving principle,” Pattern Recognition Letters, vol. 19,
no. 2, pp. 205–215, 1998.

[2] Y. Deng and B. Manjunath, “Unsupervised segmentation of color-texture
regions in images and video,” IEEE transactions on pattern analysis and
machine intelligence, vol. 23, no. 8, pp. 800–810, 2001.

[3] O. Sertel, J. Kong, U. V. Catalyurek, G. Lozanski, J. H. Saltz, and
M. N. Gurcan, “Histopathological image analysis using model-based
intermediate representations and color texture: Follicular lymphoma
grading,” Journal of Signal Processing Systems, vol. 55, no. 1-3, p.
169, 2009.

[4] C.-T. Kuo and S.-C. Cheng, “Fusion of color edge detection and
color quantization for color image watermarking using principal axes
analysis,” Pattern Recognition, vol. 40, no. 12, pp. 3691–3704, 2007.

[5] S. Wan, P. Prusinkiewicz, and S. Wong, “Variance-based color image
quantization for frame buffer display,” Color Research & Application,
vol. 15, no. 1, pp. 52–58, 1990.

[6] M. T. Orchard and C. A. Bouman, “Color quantization of images,” IEEE
transactions on signal processing, vol. 39, no. 12, pp. 2677–2690, 1991.

[7] X. Wu, “Efficient statistical computations for optimal color quantiza-
tion,” Graphics gems, vol. 2, pp. 126–133, 1991.

[8] M. E. Celebi, “Effective initialization of k-means for color quantization,”
in Image Processing (ICIP), 2009 16th IEEE International Conference
on. IEEE, 2009, pp. 1649–1652.

[9] R. Farivar, D. Rebolledo, E. Chan, and R. H. Campbell, “A parallel
implementation of k-means clustering on gpus.” in Pdpta, vol. 13, no. 2,
2008, pp. 212–312.

[10] J. MacQueen et al., “Some methods for classification and analysis
of multivariate observations,” in Proceedings of the fifth Berkeley
symposium on mathematical statistics and probability, vol. 1, no. 14.
Oakland, CA, USA., 1967, pp. 281–297.

